
TTR at the SPA:
Relating type-theoretical semantics to neural semantic

pointers

Staffan Larsson1 Robin Cooper1 Jonathan Ginzburg2 Andy Lücking2,3

1 University of Gothenburg
2 Université Paris Cité

3 Goethe University Frankfurt

CLASP seminar 15/11 2023
Previously presented at NALOMA IV, IWCS 2023, Nancy

Outline

Introduction

SPA fundamentals

TTR fundamentals

Relating SPA and TTR
The basic idea
Basic types
Judgements
Labelled sets
Record types
Paths in record types
Ptypes
Meet and Merge
Subtyping

Summary and conclusions

Outline

Introduction

SPA fundamentals

TTR fundamentals

Relating SPA and TTR
The basic idea
Basic types
Judgements
Labelled sets
Record types
Paths in record types
Ptypes
Meet and Merge
Subtyping

Summary and conclusions

Introduction

Introduction I

▶ Questions
▶ How is linguistic meaning related to perception?
▶ How do we learn and agree on the meanings of our words?

▶ We are developing a formal judgement-based semantics where notions
such as perception, classification, judgement, learning and dialogue
coordination play a central role

▶ Key ideas:
▶ modelling perceptual meanings as classifiers of real-valued perceptual

data
▶ modelling how agents learn and coordinate on meanings through

interaction with other agents (semantic coordination)

4 / 59

Introduction

Introduction II

▶ We formulate our account in TTR, a theory of types with records
(Cooper, 2023)

▶ Several key aspects of semantic coordination and learning from
interaction have been formalised using TTR.

▶ It is, at the same time, widely acknowledged that neural models have
many attractive properties, including robustness against noise and
(potentially) biological plausibility.

5 / 59

Introduction

Introduction III

▶ Work on TTR claims that it can be used to model types learned by
agents in order to classify objects and events in the world.

▶ If this is true, types must be represented in some way in brains.

▶ Here, we will explore the possibility of using Eliasmith’s Semantic
Pointer Architecture (SPA) (Eliasmith, 2013) for this purpose

▶ Our hope is that this will ultimately lead to an account of human
language learning that is interactive, incremental, explainable, robust
and biologically plausible

6 / 59

Outline

Introduction

SPA fundamentals

TTR fundamentals

Relating SPA and TTR
The basic idea
Basic types
Judgements
Labelled sets
Record types
Paths in record types
Ptypes
Meet and Merge
Subtyping

Summary and conclusions

SPA fundamentals

SPA

The Semantic Pointer Architecture (SPA) is

▶ a Vector Semantic Architecture (VSA) (Schlegel et al., 2022)

▶ based on the Neural Engineering Framework (NEF) (Eliasmith and
Anderson, 2003)

▶ implemented as Spaun (Eliasmith et al., 2012) in Nengo (Bekolay et
al., 2014)

8 / 59

SPA fundamentals

Semantic Pointers I

[. . .] semantic pointers are neural representations that are aptly de-
scribed by by high-dimensional vectors, are generated by compressing
more sophisticated representations, and can be used to access those
more sophisticated representations through decompression [. . .]. (Elia-
smith, 2013)

▶ Hence, there are three perspectives on or levels of description for
semantic pointers:

(i) in terms of neural activation,
(ii) as (high-dimensional) vectors, and
(iii) as symbols.

▶ In this paper, we will not be concerned with the neural level beyond
the assumption that there are biologically plausible neural
mechanisms underlying what happens on the levels of vectors and,
most central to our concerns, the level of symbols.

9 / 59

SPA fundamentals

Elements of VSAs and SPA

Schlegel et. al. (2022) in their survey of Vector Semantic Architectures
(VSAs) offer a comparison of different approaches in terms of four distinct
parameters:

▶ Hypervectors

▶ Similarity measurement

▶ Binding

▶ Bundling

10 / 59

SPA fundamentals

Hypervector selection

▶ When selecting vectors to represent basic entities one aims to create
maximally different encodings.

▶ Higher dimensional vector spaces offer sufficient space to maintain a
large class of vectors distinct

▶ They have the useful property that two random vectors are with very
high probability quasi-orthogonal.

11 / 59

SPA fundamentals

Similarity measurement I

▶ VSAs use similarity metrics to evaluate vector representations, in
particular, to assess whether the represented symbols have a related
meaning.

▶ The dot product of two vectors A,B is standardly computed as the
sum of the product of their components, as in (1a).

▶ Following most VSA approaches, we use cosine as a measure of
similarity; given (1b), this reduces to the dot product when the
vectors are normalised (i.e., of length 1).

(1) a. A · B =
D−1∑
k=0

akbk

b. cos θ =
A · B

||A|| ∗ ||B||

12 / 59

SPA fundamentals

Similarity measurement II

▶ If A · B ≈ 1, the vectors are (nearly) identical, A ≈ B

▶ For any vector A, A · A ≈ 1

13 / 59

SPA fundamentals

Bundling

▶ VSAs use a bundling operator to superimpose (or overlay)
hypervectors.

▶ Plate (1997) argues that a bundling operator must satisfy
unstructured similarity preservation, namely
▶ A+ B is similar to A and to B
▶ A+ B is similar to any bundle that contains one of A and B.

▶ Bundling is typically handled using vector addition, but in the
approach adopted here this requires a normalisation step to a vector
length of one.

14 / 59

SPA fundamentals

Binding I

▶ Binding × is used to connect two vectors, e.g., role-filler pairs.

▶ The output is again a vector from the same vector space.

▶ Plate (1997) argues that binding needs to satisfy:
▶ Non-similarity of bindees to output: A× B ̸≈ A,B
▶ Similarity preservation: A ≈ A′, B ≈ B ′ implies A× B ≈ A′ × B ′

▶ ‘x’ is invertible: if C = A×B, there exists A−1 such that C ×A−1 = B

15 / 59

SPA fundamentals

Binding II

▶ Here, we generally follow the approach known as Holographic
Reduced Representations (HRR), first defined by Plate (1991), which
is the approach utilised by Eliasmith and implemented in Nengo.

▶ Specifically, with respect to binding we use circular convolution
C = A⊛ B defined as follows in a space of dimension D:

(2) cj =
D−1∑
k=0

bkaj−k(mod D) for j ∈ {0, . . . ,D − 1}

▶ Circular convolution approximates the standard tensor outer product
by summing over all of its (wrap-around) diagonals.

16 / 59

SPA fundamentals

Binding III

▶ Circular correlation provides an approximated inverse for circular
convolution used for unbinding.

▶ The inverse is defined in (3a), exemplified in (3b), and its use for
unbinding is given in (3c):

(3) a. a−1
j = aD−j(mod D) where j ∈ {0, . . . ,D − 1}

b. In other words: ⟨a0, a1, . . . , aD−1⟩−1 = ⟨a0, aD−1, . . . , a1⟩
c. For example, A⊛ B ⊛ B−1 ≈ A

▶ In what follows, we use B ′ for B−1.

17 / 59

Outline

Introduction

SPA fundamentals

TTR fundamentals

Relating SPA and TTR
The basic idea
Basic types
Judgements
Labelled sets
Record types
Paths in record types
Ptypes
Meet and Merge
Subtyping

Summary and conclusions

TTR fundamentals

TTR fundamentals I

▶ a : T is a judgement that a is of type T

▶ Types may be either basic or complex

▶ Some basic types in TTR:
▶ Ind, the type of an individual
▶ Int, the type of integers
▶ Real, the type of real numbers

19 / 59

TTR fundamentals

TTR fundamentals II

▶ Complex types are structured objects which have types or other
objects introduced in the theory as components

▶ ptypes are constructed from a predicate and arguments of appropriate
types as specified for the predicate.

▶ Examples are ‘man(a)’, ‘see(a,b)’ where a, b : Ind.

▶ The objects or witnesses of ptypes can be thought of as proofs in the
form of situations, states or events in the world which instantiate the
type.

20 / 59

TTR fundamentals

Records and record types

▶ If
▶ a1 : T1,
▶ a2 : T2(a1),
▶ . . . ,
▶ an : Tn(a1, a2, . . . , an−1),
▶ where T (a1, . . . , an) represents a type T which depends on the objects

a1, . . . , an,

▶ ...the record to the left is of the record type to the right.
ℓ1 = a1
ℓ2 = a2
. . .
ℓn = an
. . .

 :


ℓ1 : T1

ℓ2 : T2(l1)
. . .
ℓn : Tn(ℓ1, l2, . . . , ln−1)


▶ ℓ1, . . . ℓn are labels which can be used elsewhere to refer to the values

associated with them.

21 / 59

TTR fundamentals

Records and record types

▶ A sample record and record type: ref = obj123
cman = prf1
crun = prf2

:
 ref : Ind

cman : man(ref)
crun : run(ref)


▶ The record on the left is of the record type on the right provided

▶ obj123 : Ind
▶ prf1 : man(obj123)
▶ prf2 : run(obj123)

22 / 59

TTR fundamentals

Meet and merge I

▶ It is possible to combine record types. Suppose that we have two
record types C1 and C2:

(4) C1 =

[
x:Ind
cman:man(x)

]
C2 =

[
x:Ind
crun:run(x)

]

▶ In this case, C1 ∧ C2 is a type; more specifically, a meet type.

▶ In general if T1 and T2 are types then T1 ∧ T2 is a type and
a : T1 ∧ T2 iff a : T1 and a : T2.

23 / 59

TTR fundamentals

Meet and merge II

▶ A meet type T1 ∧ T2 of two record types can be simplified to a new
record type by a process similar to unification in feature-based
systems.

▶ If T1 and T2 are record types then there will be a type T1∧.T2

equivalent to T1 ∧ T2 (in the sense that something will be of the first
type if and only if it is of the second type).

▶ The operation, ∧. , is referred to as merge.

(5) C1 ∧. C2 =

x:Indcman:man(x)
crun:run(x)



24 / 59

Outline

Introduction

SPA fundamentals

TTR fundamentals

Relating SPA and TTR
The basic idea
Basic types
Judgements
Labelled sets
Record types
Paths in record types
Ptypes
Meet and Merge
Subtyping

Summary and conclusions

Relating SPA and TTR The basic idea

Outline

Introduction

SPA fundamentals

TTR fundamentals

Relating SPA and TTR
The basic idea
Basic types
Judgements
Labelled sets
Record types
Paths in record types
Ptypes
Meet and Merge
Subtyping

Summary and conclusions

26 / 59

Relating SPA and TTR The basic idea

Relating SPA and TTR: The basic idea I

▶ We define a mapping, σ, from types in TTR to patterns (types) of
neural activity represented as vectors in SPA.

▶ On the basis of this we define neural judgement conditions of the
form “agent A judges s to be of type T if a particular neural
condition involving σ(T) holds.

▶ Essentially, the correspondence we define characterises the brain
activity of an agent when engaged in an act of making a type
judgement

27 / 59

Relating SPA and TTR The basic idea

Relating SPA and TTR: The basic idea II

▶ Our aim is to begin mapping out a possible correspondence between
TTR and SPA.

▶ We do not yet have a complete definition and there are a number of
questions about what we have so far.

▶ Nevertheless, we hope that what we have represents a promising
beginning.

▶ Below, we often use T to represent σ(T).

▶ We will also often use T ∼ T to mean σ(T) = T.

28 / 59

Relating SPA and TTR Basic types

Outline

Introduction

SPA fundamentals

TTR fundamentals

Relating SPA and TTR
The basic idea
Basic types
Judgements
Labelled sets
Record types
Paths in record types
Ptypes
Meet and Merge
Subtyping

Summary and conclusions

29 / 59

Relating SPA and TTR Basic types

Basic types

▶ We will use semantic pointers to correspond to basic TTR types.

▶ For basic types, we assume a function β that provides a unique
semantic pointer corresponding to each basic type and that the
function σ is defined relative to β:

(6) If T is a basic type, σβ(T) = β(T)

We will suppress the β-subscript on σ in what follows.

30 / 59

Relating SPA and TTR Judgements

Outline

Introduction

SPA fundamentals

TTR fundamentals

Relating SPA and TTR
The basic idea
Basic types
Judgements
Labelled sets
Record types
Paths in record types
Ptypes
Meet and Merge
Subtyping

Summary and conclusions

31 / 59

Relating SPA and TTR Judgements

Judgements I

▶ In TTR, judgements involving basic perceptual types can be made
either using a classifier or based on a witness cache Larsson (2020).

▶ Type judgements based on classifiers take real-valued (e.g.
perceptual) inputs.

▶ In SPA, as exemplified by the MNIST dataset (Deng, 2012) and
perceptual/cortical modelling, a classifier can be implemented as a
hierarchical statistical model which constructs representations of the
input

▶ At the highest level of the hierarchy, we have compressed
representation summarising what has been presented to the lowest
level.

▶ Following Eliasmith (2013), this compressed representation is a
semantic pointer.

32 / 59

Relating SPA and TTR Judgements

Judgements II

▶ To judge whether a situation s is of a (perceptual) type T , the
perception of s by an agent A generates a representation (in the form
of neural activity, e.g. on V1, the primary visual cortex) sA
▶ A’s take on s in the terminology of Larsson (2020)

▶ A hierarchical statistical model, call it κ, when fed sA as input to the
lowest level of κ (e.g. V1) produces a compressed representation
(neural activity) κ[sA] on the highest level (IT, the inferotemporal
cortex) of κ

33 / 59

Relating SPA and TTR Judgements

Judgements III

IT κ[sA]

V3

V2

V1 sA

stimulus current

34 / 59

Relating SPA and TTR Judgements

Judgements IV

▶ The semantic pointer T specifies a certain type of activity on the
highest level of κ, and if this activity is triggered by A perceiving s,
this corresponds to A judging s to be of type T .

▶ If T is a perceptual basic type related to the statistical model κ, then
the neural judgement condition can be expressed as (7a) or
equivalently (7b).

(7) a. s :A T if κ[sA] ≈ T

b. s :A T if κ[sA] · T ≈ 1

▶ Below we will often suppress the A-subscript on ‘:’.

35 / 59

Relating SPA and TTR Judgements

Judgements V

▶ Type judgements can also be based on a witness cache.

▶ The witness cache in TTR is a function F that takes a type T and
returns a set of objects so that x : T if a ∈ F (T).

▶ We can let F be a structure that binds types with a bundling of
semantic pointers a0 + a1 + . . .+ an, for example

(8) F = (Ind⊛ (a+ b+ . . .)) + (Int⊛ (1+ 2+ . . .)) + . . .

36 / 59

Relating SPA and TTR Judgements

Judgements VI

▶ In SPA, a bundle is similar to any of its elements.

▶ However, this similarity is more approximate than similarity between
near-identical vectors.

▶ For this reason, we do not require the dot product of bundle and
element to be 1, but only that it does not approximate 0:

(9) (A1 + A2 + . . .+ An) · Ai ̸≈ 0, (1 ≤ i ≤ n)

37 / 59

Relating SPA and TTR Judgements

Judgements VII

▶ Given this, type checking can be done by looking up the witness
cache in F and checking its similarity to the object:

(10) x : T if F⊛ T′ ∼∼∼ x

where we use ∼∼∼ so that this means

(11) x : T if F⊛ T′ · x ̸≈ 0

▶ (11) says that the vector which results from unbinding T associated
with type T from F is (approximately) identical to the semantic
pointer a.

▶ For example, a : Ind if F⊛ Ind′ ∼∼∼ a

38 / 59

Relating SPA and TTR Judgements

Judgements VIII

▶ Given an F structure consisting of pointers for two basic types IND
and INT bound to three object pointers each—A, B, C, respectively
ONE, TWO, THREE—the (correct) result of unbinding F with IND′

is approximately (∼∼∼) similar to pointers A, B and C.

39 / 59

Relating SPA and TTR Labelled sets

Outline

Introduction

SPA fundamentals

TTR fundamentals

Relating SPA and TTR
The basic idea
Basic types
Judgements
Labelled sets
Record types
Paths in record types
Ptypes
Meet and Merge
Subtyping

Summary and conclusions

40 / 59

Relating SPA and TTR Labelled sets

Labelled sets I

▶ Many structures in TTR are defined as labelled sets.

▶ We take labelled sets in TTR to correspond to SPA structures
according to the following:

(12)

{⟨ℓ1, x1⟩, . . . , ⟨ℓn, xn⟩} ∼ ℓ1 ⊛ x1 + . . .+ ℓn ⊛ xn

▶ Labelled sets are sets of ordered pairs where the first item in each pair
is a label.

▶ In SPA-TTR, we are using the binding operator ⊛ to associate two
SPA terms.

41 / 59

Relating SPA and TTR Labelled sets

Labelled sets II

▶ In both frameworks, given an item x and structure associating items,
it is possible to retrieve the item y which x is associated with in the
structure.
▶ In TTR, this is done by finding a pair ⟨x , y⟩ in S , a set of ordered pairs

of items
▶ In SPA, this is done by unbinding y from a binding x ⊛ y in a vector S,

a bundle of bindings between pairs of items.

42 / 59

Relating SPA and TTR Labelled sets

Labelled sets III

▶ An important difference between TTR and SPA is that in TTR, it is
easy to retrieve the labels that are used in a record type, which then
enables relabelling the record as needed.

▶ In SPA-TTR, retrieving the labels requires probing S for the presence
of each of a (finite) set of labels.

▶ If the set of labels is large, this may be inefficient.

▶ We do not offer a full solution to this problem here, but leave it for
future work.

▶ However, we believe that a solution can be to keep around an index of
the labels used in different record types.

43 / 59

Relating SPA and TTR Record types

Outline

Introduction

SPA fundamentals

TTR fundamentals

Relating SPA and TTR
The basic idea
Basic types
Judgements
Labelled sets
Record types
Paths in record types
Ptypes
Meet and Merge
Subtyping

Summary and conclusions

44 / 59

Relating SPA and TTR Record types

Record types I

▶ We will not attempt here to represent TTR records in SPA, but focus
instead of record types.

▶ Since TTR record types are labelled sets where the labels are paired
with types, we use our SPA coding of labelled sets for record types.

(13)

 ℓ1 : T1

. . .
ℓn : Tn

 ∼ ℓ1 ⊛ T1 + . . .+ ℓn ⊛ Tn

45 / 59

Relating SPA and TTR Paths in record types

Outline

Introduction

SPA fundamentals

TTR fundamentals

Relating SPA and TTR
The basic idea
Basic types
Judgements
Labelled sets
Record types
Paths in record types
Ptypes
Meet and Merge
Subtyping

Summary and conclusions

46 / 59

Relating SPA and TTR Paths in record types

Paths in record types I

▶ In TTR, labels conjoined by ‘.’ form paths in records and record types.

▶ We can use unbinding in SPA to achieve something similar.

▶ If
▶ T1 is a record type
▶ T2 is a type
▶ T1.ℓ1.ℓm : T2

▶ T1 ∼ T1, T2 ∼ T2, ℓi ∼ Li(1 ≤ i ≤ m),

▶ then

(14) T1 ⊛ L′1 ⊛ . . .⊛ L′m
∼∼∼ T2

▶ We can recover T2 from T1 by following the path L′1 ⊛ . . .⊛ L′m, that
is, by unbinding it with all the pointers used to construct it.

47 / 59

Relating SPA and TTR Paths in record types

Paths in record types II
▶ Note that this retrieval is lossy:

▶ Recovering T2 from its path T1 ⊛ L1 ⊛ L2 ⊛ L3 ⊛ L4 is successful,
but lossy as can be seen by comparison to querying T2 directly
starting from 0.25 s.

48 / 59

Relating SPA and TTR Ptypes

Outline

Introduction

SPA fundamentals

TTR fundamentals

Relating SPA and TTR
The basic idea
Basic types
Judgements
Labelled sets
Record types
Paths in record types
Ptypes
Meet and Merge
Subtyping

Summary and conclusions

49 / 59

Relating SPA and TTR Ptypes

Ptypes I

▶ Cooper (2023) defines a ptype P(a1, . . . , an) as representing a
labelled set {⟨pred,P⟩, ⟨arg1, a1⟩, . . . ⟨argn, an⟩}.

▶ We follow this, so that e.g.

(15) a. run(a) ∼ (pred⊛ run+ arg1⊛ a)

b. hug(a,b) ∼ (pred⊛ hug + arg1⊛ a+ arg2⊛ b)

▶ An important area for future research is to enable classifier-based
judgements of sensory input as being of ptypes and record types
involving ptypes.

▶ For example, given a situation s where a boy hugs a dog, we want an
agent A’s take on a situation sA to be judged to be of a complex type
involving properties and relations.

50 / 59

Relating SPA and TTR Meet and Merge

Outline

Introduction

SPA fundamentals

TTR fundamentals

Relating SPA and TTR
The basic idea
Basic types
Judgements
Labelled sets
Record types
Paths in record types
Ptypes
Meet and Merge
Subtyping

Summary and conclusions

51 / 59

Relating SPA and TTR Meet and Merge

Meet and Merge I

▶ We take both the meet type T1∧T2 of two types T1 and T2 and the
merge T1∧.T2 of two record types T1 and T2 to correspond to the
SPA summing operation +.

(16) a. T1∧T2 ∼ T1 + T2 for types T1 and T2

b. T1∧.T2 ∼ T1 + T2 for record types T1 and T2

c. σ(T1∧T2) = σ(T1∧.T2) = T1 + T2

52 / 59

Relating SPA and TTR Meet and Merge

Meet and Merge II

▶ The SPA summing operation is distributive in the same way that ∧.
is—‘binding distributes over bundling’ (Schlegel et al., 2022)–, so that

(17) (ℓ1 ⊛ T1 + ℓ1 ⊛ T2 = (ℓ1 ⊛ (T1 + T2))

corresponding to

(18)
[
ℓ1:T1

]
∧.

[
ℓ1:T2

]
=

[
ℓ1:T1∧.T2

]

▶ Conflating ∧ and ∧. means we are not making a distinction between
T1∧T2 and T1∧.T2 for record types T1,T2 (for non-record types, they
work in the same way also in TTR.).

53 / 59

Relating SPA and TTR Subtyping

Outline

Introduction

SPA fundamentals

TTR fundamentals

Relating SPA and TTR
The basic idea
Basic types
Judgements
Labelled sets
Record types
Paths in record types
Ptypes
Meet and Merge
Subtyping

Summary and conclusions

54 / 59

Relating SPA and TTR Subtyping

Subtyping I

▶ Since subtyping can be defined in terms of a TTR equality between
two types, this could appear to be a means of formulating the
corresponding SPA-TTR definition:

(19) T1 ⊑ T2 iff T1∧.T2 = T1 ∼ (T1 + T2) ≈ T1

▶ For example,

(20) σ(

[
x:Ta

y:Tb

]
⊑

[
x:Ta

]
)=

((x⊛ Ta + y ⊛ Tb) + (x⊛ Ta)) ≈ (x⊛ Ta + y ⊛ Tb)

55 / 59

Relating SPA and TTR Subtyping

Subtyping II

▶ However, the above solution does not work because (20) holds only if
T1 = T2, which is of course a much stronger requirement than
subtyping.

▶ An alternative could be to apply an element-wise maximum function:

(21) T1 ⊑ T2 iff T1∧.T2 = T1 ∼ max(T1,T2) ≈ T1

▶ The similarity of the maximum is indeed larger than the (cosine)
similarity of supertype and subtype.

▶ However, further work is needed to further specify and verify this
proposal.

56 / 59

Outline

Introduction

SPA fundamentals

TTR fundamentals

Relating SPA and TTR
The basic idea
Basic types
Judgements
Labelled sets
Record types
Paths in record types
Ptypes
Meet and Merge
Subtyping

Summary and conclusions

Summary and conclusions

Summary and conclusions I

▶ We took initial steps towards relating TTR to SPA, with mostly
encouraging results.

▶ We accounted for basic types, perceptual and cache-based
judgements, (singleton types), record types, meet types and merging
of record types, ptypes, and subtyping.

▶ As indicated above, more work is needed to account for subtyping and
judgements involving ptypes.

▶ Work is ongoing to cover more aspects of TTR in SPA, including
records and functions.

▶ In addition to these, several TTR elements remain to be covered,
including join types, asymmetric merge, and type stratification to
name but a few.

58 / 59

Summary and conclusions

Summary and conclusions II

▶ The benefit of succeeding with this effort would be a true hybrid
between formal and neural semantics that could potentially have the
benefits of both but the drawbacks of neither.

▶ We also hope that this work may throw light on many puzzling issues
regarding the relation between formal and neural semantics.

59 / 59

References

Bekolay, Trevor; Bergstra, James; Hunsberger, Eric; DeWolf, Travis;
Stewart, Terrence; Rasmussen, Daniel; Choo, Xuan; Voelker, Aaron;
and Eliasmith, Chris 2014.
Nengo: a Python tool for building large-scale functional brain models.
Frontiers in Neuroinformatics 7.

Cooper, Robin 2023.
From Perception to Communication.
Number 16 in Oxford Studies in Semantics and Pragmatics. Oxford
University Press, Oxford, UK.

Deng, Li 2012.
The MNIST database of handwritten digit images for machine
learning research.
IEEE Signal Processing Magazine 29(6):141–142.

Eliasmith, Chris and Anderson, Charles H. 2003.
Neural Engineering.
Computational Neuroscience. MIT Press, Cambridge, MA.

59 / 59

References

Eliasmith, Chris; Stewart, Terrence C; Choo, Xuan; Bekolay, Trevor;
DeWolf, Travis; Tang, Yichuan; and Rasmussen, Daniel 2012.
A large-scale model of the functioning brain.
science 338(6111):1202–1205.

Eliasmith, Chris 2013.
How to Build a Brain: A Neural Architecture for Biological Cognition.
Oxford University Press, Oxford.

Larsson, Staffan 2020.
Discrete and probabilistic classifier-based semantics.
In Proceedings of the Probability and Meaning Conference (PaM
2020).
62–68.

Plate, Tony 1991.
Holographic reduced representations: Convolution algebra for
compositional distributed representations.

59 / 59

References

In Mylopoulos, John and Reiter, Ray, editors 1991, Proceedings of the
12th International Joint Conference on Artificial Intelligence, IJCAI’91.

30–35.

Plate, Tony 1997.
A common framework for distributed representation schemes for
compositional structure.
Connectionist systems for knowledge representation and deduction
15–34.

Schlegel, Kenny; Neubert, Peer; and Protzel, Peter 2022.
A comparison of vector symbolic architectures.
Artificial Intelligence Review 55(6):4523–4555.

59 / 59

	Introduction
	SPA fundamentals
	TTR fundamentals
	Relating SPA and TTR
	The basic idea
	Basic types
	Judgements
	Labelled sets
	Record types
	Paths in record types
	Ptypes
	Meet and Merge
	Subtyping

	Summary and conclusions
	References

